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Abstract : Abstract : The inferential quality of an available data set, be it from a probability sample or a
nonprobability sample, is discussed under the standard of the representativeness of a sample with regard
to interesting characteristics, which implicitly includes the consideration of the total survey error. The
paper focuses on the assumptions that are made when calculating an estimator of a certain population
characteristic using a specific sampling method, and on the model-based repair methods, which can be
applied in the case of deviations from these assumptions. The different implicit assumptions regarding
operationalization, frame, selection method, nonresponse, measurement, and data processing are
considered exemplarily for the Horvitz-Thompson estimator of a population total. In particular, the
remarkable effect of a deviation from the assumption concerning the selection method is discussed. It is
shown that there are far more unverifiable, disputable models addressing the different implicit
assumptions needed in the nonprobability approach to sampling, including big data.
Moreover, the definition of the informative samples with respect to the expressed survey purpose is
presented, which complements the definition of the representativeness of samples in the practice of
survey sampling. Finally, an answer to the question in the title of this study is given and detailed reports
regarding the applied survey design are recommended.

IntroductionIntroduction

There is a constantly increasing demand for objective information about some characteristics of finite
populations of interest based on data. Regarding the sources of such data, in this paper, we will
distinguish between probability samples and nonprobability samples.

The probability sampling techniques can be described under a unique theoretical framework because they
all share the fact that they assign a known, nonzero sample selection probability to each unit of the target
population (cf., for instance, the textbooks by Särndal et al. 1992, or Lohr 2010). Examples of such
sampling schemes include simple, stratified, cluster, multistage, or probability proportional to size
random sampling. The essential aspect of these procedures is that the known selection probabilities of
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the sample members allow a design-unbiased point estimation of population characteristics, such as
totals, means, or proportions. However, for example, non-negligible nonresponse rates may require the
formulation of models regarding the mechanism that generates such a behavior.

In contrast to the probability sampling schemes, the different nonprobability sampling techniques have
only little more in common than the lack of knowledge of the associated selection probabilities. Therefore,
in contrast to the probability sampling schemes, to be able to conduct inferential statistics, these
methods will also require model assumptions to explain the selection process itself. Examples of such
techniques are the purposive methods of quota or expert choice sampling; the link-tracing designs, such
as snowball or respondent-driven sampling that are particularly used with hard-to-reach populations (cf.,
for instance, Tourangeau et al. 2014); and the arbitrary sampling methods, such as volunteer or river
sampling.

In the context of this paper, the term “big data” will refer to big, not survey-, but process-generated,
hence, non-probabilistic data sets, which primarily were not collected with the intention to conclude on
population characteristics. Examples of such process-generated data collections are those collected by
mobile phones’ network providers, which are used to estimate temporal variations in population density,
social media data used to estimate flows in the labor market, or crime-related data, which are analyzed in
the field of crime prediction.

For the purpose of setting the standard regarding the quality of sample results, the
term“representativeness”, which has been used in so many different meanings (cf. Kruskal and Mosteller
1980), is defined as the indicator of the inference quality of survey outcomes (cf. Quatember 2019):

A sample is called “representative” with respect to a certain population characteristic (such as a whole
distribution of a study variable or a parameter of this distribution) if this characteristic can be (at least
approximately) unbiasedly estimated from the available data with a predefined accuracy.

In this definition, the goal of representativeness of a sample is described by the statistical similarity
concept of the unbiasedness of estimators (cf. Särndal et al. 1992, 40) and by a requirement regarding
the efficiency of the estimates. Hence, it implicitly includes the consideration of the total survey error– a
concept that addresses both the sampling error, which describes the sample-to-sample variation of
estimators, and the systematic (or nonsampling) error that can also occur in population surveys (cf.
Weisberg 2005). In the context of statistical surveys, the term “error” refers to the difference between an
estimate of a population characteristic and its true value. Several types of errors, in particular the frame
error, the nonresponse error, the measurement error, and the processing error contribute to the
nonsampling error.

In the subsequent section, the different implicit assumptions that are made when a specific estimator of a
population characteristic is applied to any sampling method, are discussed exemplarily for the expression
of the Horvitz-Thompson estimator of a population total under simple random sampling without
replacement. In particular, the remarkable effect of a deviation from the assumption concerning the
selection method is presented. Furthermore, the statistical repair methods that may reduce the increase
of the total survey error caused by deviations from these implicitly made assumptions are considered.
Complementing the definition of the representative samples from above, the definition of the informative
samples with regard to the declared survey purpose, which may prove useful in practice, is presented in
Section 3. In the concluding section, the question asked in the title of the paper is discussed again and
answered.



  

Implicit assumptions and explicit modelsImplicit assumptions and explicit models

Let the task be the estimation of a certain population characteristic from the finite target population  of
size . Throughout the paper, as it is quite common in textbooks in the field of sampling theory (cf., for
instance, Särndal et al. 1992), let the population total

(1)   

(  denotes the sum over all units of ) of a variable  under study serve as the example of a
population characteristic of interest in . Therein,  denotes the fixed -value of population unit .

Under the laboratory conditions of the urn model from probability theory, in a probability sample  of size
 ( , ), drawn according to some probability sampling scheme  with known sample

selection probabilities, the Horvitz-Thompson estimator

(2)   

is design-unbiased for  with variance  (cf., for instance, Särndal et al. 1992, 42-48). In (2), the 
denotes the design weights of the sample elements that are defined as the reciprocals of the sample
selection probabilities.

Therefore, for simple random sampling without replacement (SI) with the probabilities  of being
selected for the SI sample , the Horvitz-Thompson estimator (2) is given by

(3)   

which results in  times the sample mean of , with variance .

However, what about using, for instance, this estimator under real conditions? Another question is, what
about using expression (3) for nonprobability samples, for which an estimator also has to be calculated
although the selection probabilities are unknowable?

Formally, the application of (3) to an available data set , be it a probability or a nonprobability sample
drawn by a sampling method , results in



(4)   

which only for an SI sample (with ) provides the estimator (3) with its known statistical
properties. The usage of this estimator is based on several assumptions that are discussed in the
following together with the models that have to be applied in the case of deviations from these
assumptions:

 

The operationalization assumption: The operationalization assumption: The first implicit assumption when an estimator such as (4) is
applied to an available data set  collected by a probability or a nonprobability sampling method , is
that variable  actually measures what is intended to be measured. In other words, it is assumed that the
research questions are correctly operationalized. In the big data context of nonprobability sampling, this
assumption plays a special role because there the research topics usually have to orient themselves on
the available data sets and not the other way around as it is usual in empirical research. An example is
the Google project on flu trends, in which records of search entries were analyzed to find those flu-related
terms that can be used for the estimation of flu prevalence. However, after an initial success, together
with a media-stoked increase of relevant searches, Google’s constantly tested and improved auto-suggest
feature and other changes in the search algorithms led to a persistent overestimation of the flu
prevalence because these search items lost their predictive value (cf., for instance, Lazer et al. 2014,
1203).

The frame assumption:The frame assumption: The next implicit assumption, when the estimator (4) is applied in the practice
of survey sampling, is that the available sampling frame , from which the members of the sample 
are actually recruited by the sampling method , corresponds to the real study population , or that 
and  only differ negligibly with respect to the interesting characteristic. In other words, it is either
assumed that there is no frame error or that there is an ignorable coverage bias, which is defined as the
difference of the expected value of the estimator  of the total of  in  and the total  in , so that 
is representative with respect to the population total, when no other nonsampling errors apply. For
nonprobability sampling schemes, the avoidance of a non-ignorable coverage bias is the big challenge
because the frame population of potential sample members almost always excludes very large parts of
the target population from the possible sample membership.

With covariates available in  and , this assumption can be tested. After that, an expected non-
ignorable coverage bias can be reduced by an explicitly formulated model concerning the distributions of
the interesting variable  and these auxiliary variables, for instance, in a ratio estimation approach (cf.,
for instance, Särndal et al. 1992, 540-546).

The sample selection assumption:The sample selection assumption: A third assumption that is implicitly made when the estimator

    

is applied to an available sample , is that the used sampling technique  actually provides the SI
selection probabilities that are used for the calculation of the design weights  in (4). In other words,



it is either assumed that there is no selection error with regard to the presumed selection probabilities or
that there is no selection bias resulting from that error.

For an insight into the impact of such a bias, estimator (4) is rewritten by

    

with the sample membership indicator  of population unit  and the deviation  of the
unit’s -value from the population mean  (cf. Ardilly and Tillé 2006, 111-114, Meng 2018, 689-700). With

, the population sum  of the products of the sample membership indicators 
(with population mean ) and the -values can be written as

    

with the “( )-population covariance”

    

of  and  (cf., for instance, Särndal et al. 1992, 186). The population correlation  of these variables
under sampling technique  is given by

    

with  and , the “( )-population variances”

of  and , respectively. Moreover,   applies (cf., for instance, Särndal et al.
1992, 36). Hence, the actual estimation error  of the estimate  is given by

    

with , the variance of  under SI sampling. Since the biased estimation shall be
addressed, Meng (2018) defines the design effect  as the ratio of the mean square errors 
of the applied estimator  under the sampling method  that was actually used and  under SI
sampling (cf., ibid., 696). This is derived from



(5)   

In the design effect , the second term on the right-hand side is a measure of
the selection bias when using the estimator  for the data collected by a technique . Obviously, for SI
sampling,  applies. For any other method , for which  applies, the usage of the usual SI
variance estimation formula under the sampling method  that was actually applied leads to the
following two negative effects (cf. Meng 2018, 700-701):

The actual coverage rates of the common approximate confidence intervals are too small;1.
The true significance levels for hypotheses tests are too large, thus resulting in too many significant2.
results under the null hypothesis.

The essence of (5) is that for a given population size  the design effect  does not depend on the size
 of the sample at all because  only influences the term . In other words,  does not depend

on how“big” the data is, but only on the deviation of the true sample selection probabilities of the
sampling technique   that was actually applied from the SI selection probabilities applied in (4). For

, the bias of  takes over the leading role in the mean square error . If 
is large, a tiny deviation of the true selection mechanism from the implicit SI assumption already results
in a large design effect  with a devastating impact on the estimator’s inferential quality.

This may apply to complex probability sampling, when for the sake of simplicity, this selection model is
used in the statistical analysis although the true design weights are knowable (cf. Bacher 2009). For
nonprobability sampling, the validity of this sample selection model, which is applied in many settings,
will almost always be in doubt, yielding the described consequences. As an alternative approach to such a
naïve explicit modeling of the unknown sample selection probabilities of nonprobability sampling,
estimates of these probabilities can be used for the calculation of the design weights needed in (2). This
estimation relies on auxiliary variables (such as demographic characteristics) that on the one hand should
explain the unknown nonprobability sample selection probabilities and on the other hand are available for
the given nonprobability sample as well as for a probability sample or the population (cf., for instance,
Elliot 2009).

Statistical methods such as poststratification or iterative proportional fitting can be applied. Such
methods match the sample to given population distributions of available auxiliary variables with the aim
of reducing selection bias by adjusting the modeled design-weights (cf., for instance, Lohr 2010,
340-346).

 

The nonresponse assumption: The nonresponse assumption: Another implicit assumption of the application of the estimator (4) is
that all elements in the drawn sample  are available and willing to respond. In other words, it is assumed
that there is no nonresponse (even in surveys on sensitive topics or in hard-to-reach and hard-to-ask



populations) or, if this is not the case, at least only a negligible nonresponse bias exists.

When despite all efforts to prevent high nonresponse rates given the applied survey mode, nonresponse
occurs, according to (5), the design effect  of the sampling technique  that was actually applied will

be affected by an increase of the expected value  , where variable  now indicates the sample
membership of the responding units. A measure of this impact of nonresponse on the inference quality is
given by the representativeness-indicator (Schouten et al. 2009). This measure is a function of the
variance of response probabilities in . The larger this variance, the lower is the representativeness of
the given responses. In this way, the representativeness-indicator estimates the deviation of the actual
nonresponse mechanism from being completely at random and thus, the potential for a non-ignorable
nonresponse bias.

The complete ignorance of nonresponse in the estimation process is a common practice, which means
that the nonresponse that occurred is modeled as being completely at random (cf., for instance, Little and
Rubin 2002, 12). In particular, in the application of the nonprobability sampling methods, a
nonrespondent is usually simply replaced by the next suitable person who is willing to cooperate and
nonresponse rates are usually not reported for the resulting data sets.

However, in the presence of non-ignorable nonresponse, it is impossible to calculate reliable estimates of
population characteristics of interest, such as the total  by a formula like (4) without any intervention in
the estimation process. For this purpose, for example, the statistical repair methods of weighting
adjustment to compensate for the unit-nonresponse that occurred (by procedures such as
poststratification or iterative proportional fitting) and data imputation for the item-nonresponse (by
techniques, such as mean or regression imputation) can be applied to reduce the amount of the
nonresponse bias under adequate and explicitly formulated models regarding the nonresponse
mechanism (cf., for instance, Bethlehem et al. 2011, Chaps. 8 and 14).

 

The measurement and data processing assumption:The measurement and data processing assumption: With the application of an estimator such as

    

it is further assumed that there are no untruthful answers given or wrong measurements as well as no
processing errors, such as a data encoding error. If this does not apply, it is at least assumed that there is
no non-negligible measurement and data processing bias, respectively.

To reduce the extent of an occurred measurement or data processing error, an explicitly formulated
plausible stochastic model describing the mechanisms that led to the wrong observations can be applied
to calculate a reliable estimate (cf. for instance, Särndal et al. 1992, 601-634).

The task force of the Executive Council of the American Association of Public Opinion Research (AAPOR)
had the task “o examine the condition under which various survey designs that do not use probability
samples might still be useful for making inferences to a larger population (cf. Baker et al. 2013, 6).” It was
noted that the different nonprobability sampling techniques can be thought of “as falling on a continuum



of expected accuracy of the estimates (ibid., 105).” At one end of the quality scale, are the completely
uncontrolled arbitrary samples, whereas at the other end, are the methods based on less risky selection
procedures in which the results are adjusted as described above, using auxiliary variables that are
correlated with the variables of interest (cf. Baker et al. 2013, 105-106).

 

A complementary concept on the inferential quality ofA complementary concept on the inferential quality of
surveyssurveys

Suggesting the definition of representativeness in Section 1, in the practice of sampling, it cannot be
ignored that it is often sufficient to get a very rough idea of a population characteristic of interest.
Examples from empirical sciences include pretests or pilot studies, but there are also public surveys, for
instance, to identify some of the causes of a possible dissatisfaction among community residents that fall
into this category of surveys. When nothing or very little is known about characteristics of interest
describing, for instance, a hard-to-reach population, the following supplementary definition takes account
of this fact (Quatember 2001, 20):

A sample is called “informative” for a certain population characteristic if it provides sufficient information
on that characteristic with respect to the declared survey purpose.

Herein, the acceptable degree of inaccuracy is mainly determined by the usefulness of the resulting
outcomes with respect to the purpose of the survey, which does not always have to be a high-quality
inference from a representative sample to the target population.

 

ConclusionsConclusions

The question was this: Inferences based on probability sampling or nonprobability sampling – are they
nothing but a question of models? The answer is this: Yes, they are!– but only under certain implicit
assumptions and explicit models to react on deviations, in this regard as discussed in Section 2
exemplarily for the usage of the Horvitz-Thompson estimator (3) of SI sampling for a total (1) of a variable
under study. It is implicitly assumed that there is no operationalization, coverage, selection, nonresponse,
measurement, or processing bias. In the presence of deviations from these basic assumptions, facing the
risk of a substantially biased estimator, a model-based estimation has to be established instead. For this
purpose, complementary explicit models have to be formulated concerning these deviations between
theory and practice. Then, even the representativeness of a probability sample is only valid under these
models, which always applies to nonprobability samples.

However, is there a difference between probability samples and nonprobability samples regarding these
models? Again, the answer is: Yes! There are far more unverifiable, disputable models that address the
different implicit assumptions, needed in the nonprobability approach to sampling, including big data.
Nevertheless, the application of a nonprobability sampling technique instead of a probability sampling
method might be justified for specific research objectives concerning, for example, special populations,
such as hard-to-reach ones, for which informative instead of representative samples, according to the
additionally presented definition in Section 3, are sufficient. However, if high-quality inference is the



survey purpose, it is still the theory of probability sampling that sets the standard and serves as a
landmark.

As a consequence of the different strengths of model-dependencies and the varying intended research
purposes, sufficient details about the applied sampling design and the survey purpose shall have to be
standardly reported along with all the applied implicit assumptions and explicit models. Only such a
report may enable data users to assess the real quality of produced survey results.
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